Numerical simulation of distributed propulsion systems using CFD

AEROSPACE SCIENCE AND TECHNOLOGY(2024)

引用 0|浏览0
暂无评分
摘要
This paper examines a Distributed Propulsion (DP) concept and involves CFD verification, optimisation and evaluation. The first part of the study validates the employed simulation methods using experimental data from the NASA Workshop for Integrated Propeller Prediction (WIPP) and the Folding Conformal High Lift Propeller (HLP) project, for isolated and installed cases under various conditions. Additionally, validation for rotor -rotor interactions was also conducted using the GARTEUR Action Group 26 measurements. The second part of the paper examines installed propeller configurations to identify performance differences based on their position relative to a lifting wing. The results indicate that distributed propellers with small radii interfere more with the wing, than tip-mounted, large propellers. Additionally, propeller and wing performance vary with respect to the propeller installation location. The propeller in tractor configuration showed higher efficiency than the over-the-wing (OTW) configuration by about 7%. However, results from this work showed a 2% improvement in the propeller efficiency when the OTW configuration had a pylon installed. This study also found that optimising the propeller from a tractor to OTW configuration, significantly improved the wing performance. At take -off and landing, the Lift-to-Drag (L/D) ratio of the OTW configuration almost quadrupled, and the overall propulsive efficiency increased by about 5%. The simulations showed that the OTW configuration with different numbers of propellers, outperformed the tractor configurations with the same number of propellers. Furthermore, up to 26% improvement in lift and overall propulsive efficiency was found by introducing the DP system in the OTW configuration.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要