Power generation assessment of photovoltaic noise barriers across 52 major Chinese cities

APPLIED ENERGY(2024)

引用 0|浏览2
暂无评分
摘要
Photovoltaic noise barriers (PVNBs) have the potential to contribute to sustainable urban development by increasing the supply of renewable energy to cities while decreasing traffic noise pollution. However, estimating the power generation of PVNBs at the city or national scale remains a challenge due to the complexities of the urban environment and the difficulties associated with collecting data on road noise barriers (RNBs) and radiation. This study used RNBs, 2.5 -dimensional (2.5D) buildings, and hourly time resolution radiation data, to estimate the power generation of PVNBs in 52 of China's major cities. First, hourly building shadows were estimated for each day of the year, covering the period from sunrise to sunset, to identify areas of RNB that are shaded at any given time. Second, hourly clear -sky radiation data were collected and corrected using a radiation correction model to simulate real weather radiation. Finally, utilizing an inclined surface radiation estimation model, the photovoltaic (PV) potential both inside and outside RNBs affected by building shadows was assessed. Subsequently, the power generation of PVNB was estimated based on parameters of mainstream PV systems in the market. The results show that the RNB mileage in 52 selected cities represents 87.7% of China's total RNB mileage. Building shadows often result in a radiation loss of approximately 30% for RNBs reception. The installed capacity and annual power generation of PVNBs in all investigated cities are 2.04 GW and 690.74 GWh, respectively. This study estimates the comprehensive PV potential of potentially exploitable PVNBs in China, offering essential scientific insights to inform and facilitate the strategic development of PVNB projects at both the national and municipal levels.
更多
查看译文
关键词
Road noise barriers,Photovoltaic,Building shadows,Sustainable cities
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要