谷歌浏览器插件
订阅小程序
在清言上使用

River-to-ocean Pathways of Beryllium-9 Through Estuaries

GEOCHIMICA ET COSMOCHIMICA ACTA(2024)

引用 0|浏览19
暂无评分
摘要
Estuarine processes are key in modulating the riverine input of particle-reactive trace elements to the ocean. An important, but still under-utilized member of these elements is beryllium-9 (9Be) that together with cosmogenic 10Be has been suggested to serve as a quantitative tracer of present and past continental weathering flux. This study investigates different pathways of terrigenous 9Be through coastal areas into the ocean, based on dissolved 9Be concentrations in surface and bottom waters together with corresponding particulate 9Be concentrations along the salinity gradient in the Changjiang Estuary. Dissolved 9Be in the Changjiang Estuary shows a non-conservative behavior: At low to mid-salinity where water is well-mixed, 9Be is removed from both surface and bottom waters at low salinity and then released back into the water column at mid-salinity. At high salinity where water is stratified, dissolved 9Be is removed from surface waters, but is released back into bottom waters.In combination with hydrochemical (e.g., dissolved oxygen) and particulate 9Be data obtained from different extracted phases, we attribute the removal of dissolved 9Be at low salinity to salt-induced colloidal flocculation, whereas in surface waters at high salinity, we ascribe the removal to biological scavenging facilitated by phytoplankton blooms. The release of 9Be into mid- and high-salinity bottom waters is likely dominated by benthic processes, including porewater diffusion and/or submarine groundwater discharge. The contribution from desorption of 9Be from suspended particulate matter is negligible throughout the entire estuary. We propose that the release of 9Be through benthic processes potentially presents the most important contributor to the marine 9Be budget, where this benthic flux of 9Be is likely enhanced by hypoxic conditions in coastal bottom waters.
更多
查看译文
关键词
Beryllium-9,Changjiang Estuary,Pathways,Benthic flux,Hypoxia
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要