Targeting the main SARS-Cov-2 pathways with peptide inhibitors by molecular docking and molecular simulation approaches

JOURNAL OF MOLECULAR LIQUIDS(2024)

引用 0|浏览2
暂无评分
摘要
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a significant global health crisis. The virus's spike glycoprotein (S protein) plays a pivotal role in facilitating viral entry and enhancing infectivity. In this study, we aimed to design peptides that can inhibit the interaction between the Omicron SARS-CoV-2 spike protein and its receptor ACE2, thereby preventing viral pathogenesis. We employed computational methods, including molecular docking and molecular dynamics simulations, to design and assess the binding affinity of peptide inhibitors. The crystal structure of the receptor-binding domain (RBD)ACE2 complex was used as a template for peptide design. The designed peptides were evaluated for their stability, interaction strength, and binding affinity through molecular dynamics simulations. A library of peptide candidates was constructed, considering mutations that enhance binding affinity. The toxicity and allergenicity of the peptides were also assessed. Our results identified several promising peptide inhibitors with high affinity for the Omicron RBD domain. These peptides exhibited strong hydrophobic interactions and significant binding strengths. The findings suggest that these peptides could potentially inhibit viral fusion and pathogenicity, with P11 being the most potent inhibitor.
更多
查看译文
关键词
Modeling,Silico peptide design,SARS-Cov-2,COVID-19,Molecular docking simulations,Molecular dynamics simulations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要