谷歌浏览器插件
订阅小程序
在清言上使用

Quantum Frequential Computing: a quadratic run time advantage for all algorithms

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
We introduce a new class of computer called a quantum frequential computer. They harness quantum properties in a different way to conventional quantum computers to generate a quadratic computational run time advantage for all algorithms as a function of the power consumed. They come in two variants: type 1 can process classical algorithms only while type 2 can also process quantum ones. In a type-1 quantum frequential computer, only the control is quantum, while in a type 2 the logical space is also quantum. We also prove that a quantum frequential computer only requires a classical data bus to function. This is useful, because it means that only a relatively small part of the overall architecture of the computer needs to be quantum in a type-1 quantum frequential computer in order to achieve a quadratic run time advantage. As with classical and conventional quantum computers, quantum frequential computers also generate heat and require cooling. We also characterise these requirements.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要