谷歌浏览器插件
订阅小程序
在清言上使用

Multi-event-triggered adaptive dynamic programming for non-zero-sum game of unknown nonlinear system

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL(2024)

引用 0|浏览8
暂无评分
摘要
In this article, a multi-event-triggered (MET) near-optimal tracking control algorithm is developed for a discrete-time (DT) nonlinear non-zero-sum game (NZSG). Firstly, the iterative dual heuristic dynamic programming (DHP) approach is utilized to obtain the optimal tracking control set. Subsequently, distinct independent triggering conditions are formulated for control inputs to improve the utilization efficiency of resources and ensure that the independence between them and the closed-loop system has an excellent control performance. Meanwhile, input-to-state stability (ISS) is proven for the MET tracking plant. Additionally, neural networks (NNs) are designed in the iterative DHP algorithm to construct the model module, the critic module and the action modules, with aims to identify the unknown system, approximate costate function and estimate optimal tracking control strategy set, respectively. Finally, two numerical experimental simulations are conducted to verify the effectiveness of the proposed scheme.
更多
查看译文
关键词
iterative adaptive dynamic programming (ADP),multi-event-triggered (MET) control,neural networks (NNs),non-zero-sum game (NZSG),optimal tracking control
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要