Bipolar membrane electrodialysis integrated with in-situ CO2 absorption for simulated seawater concentrate utilization, carbon storage and production of sodium carbonate

JOURNAL OF ENVIRONMENTAL SCIENCES(2024)

引用 0|浏览2
暂无评分
摘要
In the context of carbon capture, utilization, and storage, the high-value utilization of carbon storage presents a significant challenge. To address this challenge, this study employed the bipolar membrane electrodialysis integrated with carbon utilization technology to prepare Na2CO3 products using simulated seawater concentrate, achieving simultaneous saline wastewater utilization, carbon storage and high-value production of Na2CO3. The effects of various factors, including concentration of simulated seawater concentrate, current density, CO2 aeration rate, and circulating flow rate of alkali chamber, on the quality of Na2CO3 product, carbon sequestration rate, and energy consumption were investigated. Under the optimal condition, the CO32- concentration in the alkaline chamber reached a maximum of 0.817 mol/L with 98 mol% purity. The resulting carbon fixation rate was 70.50%, with energy consumption for carbon sequestration and product production of 5.7 kWhr/m(3) CO2 and 1237.8 kWhr/ton Na2CO3, respectively. This coupling design provides a triple-win outcome promoting waste reduction and efficient utilization of resources.
更多
查看译文
关键词
Bipolar membrane electrodialysis (BMED),Carbon capture,Utilization and storage (CCUS),Seawater concentrate,Sodium carbonate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要