Bifunctional S-scheme CdSSe/Bi2WO6 heterojunction catalysts exhibit generalized boosting performance in photocatalytic degradation of tetracycline hydrochloride, photoelectrochemical and electrocatalytic hydrogen production

JOURNAL OF ALLOYS AND COMPOUNDS(2024)

引用 0|浏览3
暂无评分
摘要
In this work, by a simple method of hydrothermal synthesis, the CdSSe/Bi2WO6 S-scheme heterojunction catalyst is successfully obtained and the results are verified by XPS, EPR, band structure, etc. The S-scheme heterojunction can maintain the strong redox potential energy position of both catalysts, and adjust the electron transfer path to improve the electron-hole separation efficiency, and thus improve the charge transfer efficiency. CdSSe has a high conduction band (-1.13 eV) and a narrow bandgap width (1.59 eV), exhibiting good light absorption characteristics and reduction ability; the valence band position of Bi2WO6 is much low (2.58 eV), indicating good oxidation activity. This heterojunction has excellent oxidation and reduction capabilities and exhibits multifunctional catalysts. Its photocatalytic degradation ability of tetracycline hydrochloride is 2.2 times that of the original CdSSe, while its photoelectrochemical activity is 11 times that of CdSSe, reaching a photocurrent density of - 2.081 mA/cm2 at 0 V (vs. RHE). The electrocatalytic activity of its hydrogen evolution has also been enhanced. This study developed a design strategy for a novel bifunctional S-scheme heterojunction catalyst.
更多
查看译文
关键词
S -scheme,Photocatalysis,Photoelectrochemistry,Electrocatalysis,CdSSe/Bi2WO6
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要