Current status and challenges for hole-selective poly-silicon based passivating contacts

APPLIED PHYSICS REVIEWS(2024)

引用 0|浏览2
暂无评分
摘要
Doped polysilicon (poly-Si) passivating contacts have emerged as a key technology for the next generation of silicon solar cells in mass production, owing to their excellent performance and high compatibility with the existing passivated emitter and rear cell technology. However, the current solar cell architecture based on a rear-side electron-selective (n(+)) poly-Si contact is also approaching its practical limit (similar to 26%) in mass production. The full potential of doped poly-Si passivating contacts can only be realized through incorporation of both electron-selective and hole-selective (p(+)) poly-Si contacts. While studies of both p(+) and n(+) poly-Si contacts commenced simultaneously, significant performance differences have arisen. Phosphorus-doped poly-Si contacts consistently outperform boron-doped counterparts, displaying typically lower recombination current density (J(0)) values ( ( 1 - 5 fA/cm(2) vs 7 - 15 fA/cm(2)) This discrepancy can be attributed to inadequate optimization of p(+) poly-Si contacts and fundamental limitations related to boron doping. The poorer passivation of p(+) poly-Si contacts can be at least partly attributed to boron segregation into the interfacial oxide layers, compromising the interfacial oxide integrity and reducing the chemical passivation effectiveness. This review critically examines the progress of p(+) poly-Si contacts characterized by cell efficiency and J(0) values, delves into existing challenges, identifies potential solutions, and explores some potential solar cell architectures to enhance efficiency by incorporating p(+) poly-Si contacts.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要