Enhancing Interplanar Spacing in V2O3/V3O7 Heterostructures to Optimize Cathode Efficiency for Zn-Ion Batteries

Tharani Selvam,Durgalakshmi Dhinasekaran,Balakumar Subramanian, Ajay Rakkesh Rajendran

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2024)

引用 0|浏览0
暂无评分
摘要
The improvement of sophisticated cathode materials plays a major role in boosting the efficiency of Zn-ion batteries. These batteries have garnered considerable interest as a result of their excellent energy density and the promise of cost-effective solutions for energy storage. In this work, we present a novel approach to progress the electrochemical investigation of Zn-ion batteries by expanding the interplanar distance of layered hydrated V2O3/V3O7 heterostructure nanosheets. Electrochemical investigations were conducted to assess the effectiveness of the stacked hydrated V2O3/V3O7 heterostructure as a cathode component for Zn-ion batteries. The expanded interplanar space as a result of the introduction of water molecules facilitates the insertion/extraction of Zn ions, leading to significantly enhanced electrochemical characteristics. The layered hydrated V2O3/V3O7 heterostructure exhibited an impressive specific capacity of 330 mAh g(-1) at a current density of 0.1 A g(-1), maintaining a capacity retention of approximately 92.3% and a coulombic efficiency of 95.8% even after 2000 cycles.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要