1,5-Diiodocycloctane: a cyclane solvent additive that can extend the exciton diffusion length in thick film organic solar cells

ENERGY & ENVIRONMENTAL SCIENCE(2024)

引用 0|浏览3
暂无评分
摘要
The short exciton diffusion length associated with most state-of-the-art organic semiconductors used in organic solar cells (OSCs) imposes severe limits on the exciton transport in the larger donor/acceptor domains and the exciton dissociation at the interface, which hinder further improvements in the power conversion efficiencies (PCE) of the thick-film devices. In this study, a new cyclane, 1,5-diiodocycloctane (DICO), was employed as a solvent additive to effectively extend the exciton LD within the bulk-heterojunction blend, which can function with the multiple photovoltaic materials system. Due to the great enhancement of molecular stacking and exclusively large domain sizes of photovoltaic materials with the assistance of the DICO additive, the trap density in devices is significantly reduced, thereby nearly doubling the LD in the thick film OSCs. Notably, the DICO-processed PM6/L8-BO-based OSC showed high thickness tolerance for the bulk-heterojunction (BHJ) layer, delivering a high PCE of 19.1% in the case of a 110 nm thick film and still maintaining an excellent PCE of 17.2% in the case of a 300 nm thick film. Crucially, a noticeably increased stability of the multiple materials system was observed in the DICO-processed OSCs. These findings enrich the additive family with new cyclane systems to extend the exciton LD in thick film OSCs with high performance. The addition of cyclane 1,5-diiodocycloctane (DICO) provides critical roles in extending exciton diffusion length within active layer, consequently contributing to the improvement in the power conversion. efficiency in thick film organic solar cells.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要