Ultrahigh zT from strong electron-phonon interactions and a low-dimensional Fermi surface

ENERGY & ENVIRONMENTAL SCIENCE(2024)

引用 0|浏览1
暂无评分
摘要
The outstanding thermoelectric performance of GeTe has attracted significant attention in the research community in recent years. However, many of the underlying physical mechanisms that contribute to GeTe's exceptionally high figure of merit (zT) remain not fully understood. In this study, an Sb-Bi codoped GeTe single crystal (Ge0.86Sb0.08Bi0.06)Te with an ultrahigh zT of 2.7 at 700 K and a record high device zT of 1.41 in the temperature range of 300-773 K was synthesized and investigated. The ultrahigh zT is attributed to the extremely low lattice thermal conductivity induced by strong electron-phonon (EP) interactions as revealed by the experimentally observed Kohn anomaly, through inelastic neutron scattering (INS) measurements. First-principles calculations further demonstrate that the remarkable EP interaction arises from the Fermi surface nesting featured in a one-dimensional (double-walled) topology. Our finding unravels the ultrahigh-zT mechanism in GeTe-based materials, serving as an inspiring guide toward high thermoelectric performance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要