Explicit solution to the nonlinear geometry of double wishbone suspension by decoupling steering and wheel jumping DOF

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING(2024)

引用 0|浏览0
暂无评分
摘要
The suspension system is vital to vehicle performance because it undertakes most of the interactions between wheels and the vehicle body. Due to the significant geometric nonlinearity, there is still a gap of suitable suspension models that are both accurate and computationally efficient. To solve the problem, this paper proposes an explicit solution to the nonlinear geometry of double wishbone suspension by decoupling steering and wheel jumping degrees of freedom (DOF). By discarding the small displacement assumption in the derivation process, the new model gets rid of repeated numerical iterations, resulting in substantial enhancement in computational efficiency. Furthermore, it is noticed in the comparative study that the proposed model can achieve the same level of accuracy as Adams. Benefiting from high computational efficiency and accuracy, the decoupling model presented is successfully used in the optimal design of a double wishbone suspension for smaller variation ranges of wheel alignment parameters. It is anticipated that the research will make significant contribution to fast dimension design of suspension geometry and real-time control of active variable geometry suspensions.
更多
查看译文
关键词
Double wishbone suspension,geometric nonlinearity,decoupling,optimal design,computational efficiency
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要