Dark Dragon Breaks Magnetic Chain: Dynamical Substructures of IRDC G28.34 Form in Supported Environments

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
We have comprehensively studied the multi-scale physical properties of the infrared dark cloud (IRDC) G28.34 (the Dragon cloud) with dust polarization and molecular line data from Planck, FCRAO-14m, JCMT, and ALMA. We find that the averaged magnetic fields of clumps tend to be either parallel with or perpendicular to the cloud-scale magnetic fields, while the cores in clump MM4 tend to have magnetic fields aligned with the clump fields. Implementing the relative orientation analysis (for magnetic fields, column density gradients, and local gravity), Velocity Gradient Technique (VGT), and modified Davis-Chandrasekhar-Fermi (DCF) analysis, we find that: G28.34 is located in a trans-to-sub-Alfvénic environment (ℳ_A=0.74 within r=15 pc); the magnetic field is effectively resisting gravitational collapse in large-scale diffuse gas, but is distorted by gravity within the cloud and affected by star formation activities in high-density regions; and the normalized mass-to-flux ratio tends to increase with increasing density and decreasing radius. Considering the thermal, turbulent, and magnetic supports, we find that the environmental gas of G28.34 is in a super-virial (supported) state, the infrared dark clumps may be in a near-equilibrium state, and core MM4-core4 is in a sub-virial (gravity-dominant) state. In summary, we suggest that magnetic fields dominate gravity and turbulence in the cloud environment at large scales, resulting in relatively slow cloud formation and evolution processes. Within the cloud, gravity could overwhelm magnetic fields and turbulence, allowing local dynamical star formation to happen.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要