谷歌浏览器插件
订阅小程序
在清言上使用

Bionic Nanocoating of Prosthetic Grafts Significantly Reduces Bacterial Growth.

ACS applied materials & interfaces(2024)

引用 0|浏览6
暂无评分
摘要
Prosthetic materials are a source of bacterial infections, with significant morbidity and mortality. Utilizing the bionic "Lotus effect," we generated superhydrophobic vascular prostheses by nanocoating and investigated their resistance to bacterial colonization. Nanoparticles were generated from silicon dioxide (SiO2), and coated vascular prostheses developed a nanoscale roughness with superhydrophobic characteristics. Coated grafts and untreated controls were incubated with different bacterial solutions including heparinized blood under mechanical stress and during artificial perfusion and were analyzed. Bioviability- and toxicity analyses of SiO2 nanoparticles were performed. Diameters of SiO2 nanoparticles ranged between 20 and 180 nm. Coated prostheses showed a water contact angle of > 150° (mean 154 ± 3°) and a mean water roll-off angle of 9° ± 2°. Toxicity and viability experiments demonstrated no toxic effects of SiO2 nanoparticles on human induced pluripotent stem cell-derived cardiomyocytes endothelial cells, fibroblasts, and HEK239T cells. After artificial perfusion with a bacterial solution (Luciferase+ Escherichia coli), bioluminescence imaging measurements showed a significant reduction of bacterial colonization of superhydrophobic material-coated prostheses compared to that of untreated controls. At the final measurement (t = 60 min), a 97% reduction of bacterial colonization was observed with superhydrophobic material-coated prostheses. Superhydrophobic vascular prostheses tremendously reduced bacterial growth. During artificial perfusion, the protective superhydrophobic effects of the vascular grafts could be confirmed using bioluminescence imaging.
更多
查看译文
关键词
vascular prosthesis,superhydrophobic coating,bionic,nanotechnology,prosthetic infection,bioluminescence imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要