A Novel NASICON-Type Na3.5MnCr0.5Ti0.5(PO4)3 Nanofiber with Multi-electron Reaction for High-Performance Sodium-Ion Batteries

Advanced Fiber Materials(2024)

引用 0|浏览1
暂无评分
摘要
Sodium superionic conductors (NASICONs) show significant promise for application in the development of cathodes for sodium-ion batteries (SIBs). However, it remains a major challenge to develop the desired multi-electron reaction cathode with a high specific capacity and energy density. Herein, we report a novel NASICON-type Na3.5MnCr0.5Ti0.5(PO4)3 cathode obtained by combining electrospinning and stepwise sintering processes. This cathode exhibits a high discharge capacity of 160.4 mAh g−1 and operates at a considerable medium voltage of 3.2 V. The Na3.5MnCr0.5Ti0.5(PO4)3 cathode undergoes a multi-electron redox reaction involving the Cr3+/4+ (4.40/4.31 V vs. Na/Na+), Mn3+/4+ (4.18/4.03 V), Mn2+/3+ (3.74/3.41 V), and Ti3+/4+ (2.04/2.14 V) redox couples. This redox reaction enables a three-electron transfer during the Na+ intercalation/de-intercalation processes. As a result, the Na3.5MnCr0.5Ti0.5(PO4)3 demonstrates a significant enhancement in energy density, surpassing other recently reported SIB cathodes. The highly reversible structure evolution and small volume changes during cycling were demonstrated with in-situ X-ray diffraction, ensuring outstanding cyclability with 77
更多
查看译文
关键词
Sodium-ion battery,NASICON structure,Na3.5MnTi0.5Cr0.5(PO4)3 nanofiber,Ex/in-situ characterization,Multi-electron reaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要