Nanoinformatics based insights into the interaction of blood plasma proteins with carbon based nanomaterials: Implications for biomedical applications.

Abhishek Ramachandra Panigrahi, Abhinandana Sahu,Pooja Yadav,Samir Kumar Beura, Jyoti Singh, Krishnakanta Mondal,Sunil Kumar Singh

Advances in protein chemistry and structural biology(2024)

引用 0|浏览2
暂无评分
摘要
In the past three decades, interest in using carbon-based nanomaterials (CBNs) in biomedical application has witnessed remarkable growth. Despite the rapid advancement, the translation of laboratory experimentation to clinical applications of nanomaterials is one of the major challenges. This might be attributed to poor understanding of bio-nano interface. Arguably, the most significant barrier is the complexity that arises by interplay of several factors like properties of nanomaterial (shape, size, surface chemistry), its interaction with suspending media (surface hydration and dehydration, surface reconstruction and release of free surface energy) and the interaction with biomolecules (conformational change in biomolecules, interaction with membrane and receptor). Tailoring a nanomaterial that minimally interacts with protein and lipids in the medium while effectively acts on target site in biological milieu has been very difficult. Computational methods and artificial intelligence techniques have displayed potential in effectively addressing this problem. Through predictive modelling and deep learning, computer-based methods have demonstrated the capability to create accurate models of interactions between nanoparticles and cell membranes, as well as the uptake of nanomaterials by cells. Computer-based simulations techniques enable these computational models to forecast how making particular alterations to a material's physical and chemical properties could enhance functional aspects, such as the retention of drugs, the process of cellular uptake and biocompatibility. We review the most recent progress regarding the bio-nano interface studies between the plasma proteins and CBNs with a special focus on computational simulations based on molecular dynamics and density functional theory.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要