谷歌浏览器插件
订阅小程序
在清言上使用

An Efficient Pyrrolysyl-tRNA Synthetase for Economical Production of MeHis-containing Enzymes

Faraday discussions(2024)

引用 0|浏览24
暂无评分
摘要
Genetic code expansion has emerged as a powerful tool in enzyme design and engineering, providing new insights into sophisticated catalytic mechanisms and enabling the development of enzymes with new catalytic functions. In this regard, the non-canonical histidine analogue N delta-methylhistidine (MeHis) has proven especially versatile due to its ability to serve as a metal coordinating ligand or a catalytic nucleophile with a similar mode of reactivity to small molecule catalysts such as 4-dimethylaminopyridine (DMAP). Here we report the development of a highly efficient aminoacyl tRNA synthetase (G1PylRSMIFAF) for encoding MeHis into proteins, by transplanting five known active site mutations from Methanomethylophilus alvus (MaPylRS) into the single domain PylRS from Methanogenic archaeon ISO4-G1. In contrast to the high concentrations of MeHis (5-10 mM) needed with the Ma system, G1PylRSMIFAF can operate efficiently using MeHis concentrations of similar to 0.1 mM, allowing more economical production of a range of MeHis-containing enzymes in high titres. Interestingly G1PylRSMIFAF is also a 'polyspecific' aminoacyl tRNA synthetase (aaRS), enabling incorporation of five different non-canonical amino acids (ncAAs) including 3-pyridylalanine and 2-fluorophenylalanine. This study provides an important step towards scalable production of engineered enzymes that contain non-canonical amino acids such as MeHis as key catalytic elements. A highly efficient aminoacyl tRNA synthetase (G1PylRSMIFAF) has been developed to produce MeHis-containing proteins. High protein titres can be achieved with low ncAA concentrations (0.1 mM) enabling more economical production of MeHis-containing enzymes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要