Ocean Response to Typhoon Mangkhut (2018) on a Continental Slope in the South China Sea

crossref(2024)

引用 0|浏览0
暂无评分
摘要
Typhoon is a synoptic phenomenon that has significant impact on ocean. Mooring observations of nearly the full water column on the continental slope in the South China Sea revealed the ocean's response to Typhoon Mangkhut (2018). Mangkhut induced sea surface cooling ∼4°C that was biased to the right side of its track, which recovered with an e-folding time after approximately 1 week.  Mangkhut was a relatively fast-moving typhoon and caused a fast near-inertial response throughout the entire depth in its lee. The typhoon-induced upper ocean (deep-water) near-inertial current velocities were >1.5 m/s (∼0.08 m/s), with an e-folding time of approximately a week (2 weeks) and frequency of 1.04f (1.08f, where f is the local inertial frequency). The near-inertial currents were near-circular polarized in the upper ocean and near-rectilinear polarized with the main axis in the across-slope direction in deep water. The deep-water near-inertial waves amplified the vertical excursions of isotherms from ∼120 to ∼200 m, reduced the stratification, elevated vertical current shears, and enhanced turbulent dissipation rate, especially during 14–17 September when the effects of near-inertial waves and diurnal spring tides overlapped. A net cooling ∼0.15°C and salinity increase ∼0.05 psu were observed in the deep ocean after Mangkhut. Typhoon-induced near-inertial waves correspond to the intensification of southwestward along-slope mean near-bottom currents. This study indicates the immediate influence of typhoon in deep-water and contribute to the bottom mixing on the continental slope.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要