Calibration of Equivalent Viscous Damping Expressions for Displacement-Based Design and Application to RC Frames

BUILDINGS(2024)

引用 0|浏览1
暂无评分
摘要
Equivalent viscous damping plays a central role in displacement-based design procedures. In this paper, approaches for estimating the equivalent viscous damping of RC frame buildings are proposed. At first, the analytical formulation of Blandon and Priestley was analysed, and then a calibration of the coefficients of this formulation was performed. Compared with the work of Blandon and Priestley, a larger set of synthetic accelerograms, related to different types of soil and different intensities, and a wider range of the effective periods were considered. In particular, two different sets of parameters are proposed: the first is usable in the case of spectra obtained numerically (approach 1), and the second is usable in the case of code-based spectra and damping modification factor (approach 2). To test the performed calibration and to compare the considered formulations (i.e., the proposed and literature equations), the direct displacement-based design procedure has been applied to three case studies of reinforced concrete frame structures, and then pushover and nonlinear time-history analyses have been performed. The results show that the use of the calibrated parameters (for both the considered approaches) has determined more conservative results, in terms of design base shear and maximum drift from NLTH. Moreover, the average displacement profiles and the inter-storey drifts obtained from time-history analyses for the frames designed with the calibrated parameters match better the design profile.
更多
查看译文
关键词
direct displacement-based design,equivalent viscous damping,reinforced concrete frames,pushover analysis,inelastic time-history analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要