Anodizing Tungsten Foil with Ionic Liquids for Enhanced Photoelectrochemical Applications

Elianny Da Silva, Ginebra Sanchez-Garcia, Alberto Perez-Calvo,Ramon M. Fernandez-Domene,Benjamin Solsona,Rita Sanchez-Tovar

MATERIALS(2024)

引用 0|浏览3
暂无评分
摘要
This research examines the influence of adding a commercial ionic liquid to the electrolyte during the electrochemical anodization of tungsten for the fabrication of WO3 nanostructures for photoelectrochemical applications. An aqueous electrolyte composed of 1.5 M methanesulfonic acid and 5% v/v [BMIM][BF4] or [EMIM][BF4] was used. A nanostructure synthesized in an ionic-liquid-free electrolyte was taken as a reference. Morphological and structural studies of the nanostructures were performed via field emission scanning electron microscopy and X-ray diffraction analyses. Electrochemical characterization was carried out using electrochemical impedance spectroscopy and a Mott-Schottky analysis. From the results, it is highlighted that, by adding either of the two ionic liquids to the electrolyte, well-defined WO3 nanoplates with improved morphological, structural, and electrochemical properties are obtained compared to samples synthesized without ionic liquid. In order to evaluate their photoelectrocatalytic performance, the samples were used as photocatalysts to generate hydrogen by splitting water molecules and in the photoelectrochemical degradation of methyl red dye. In both applications, the nanostructures synthesized with the addition of either of the ionic liquids showed a better performance. These findings confirm the suitability of ionic liquids, such as [BMIM][BF4] and [EMIM][BF4], for the synthesis of highly efficient photoelectrocatalysts via electrochemical anodization.
更多
查看译文
关键词
ionic liquid,organic dye degradation,tungsten oxide,photoelectrocatalysis,water splitting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要