GLM lightning flashes observed during ASIM triggers over Tropical South America

crossref(2024)

引用 0|浏览2
暂无评分
摘要
The Atmosphere-Space Interactions Monitor (ASIM) on board the International Space Station (ISS) is collecting data of lightning and Terrestrial Gamma Flashes (TGF) over the globe since April 2018 by means of two suites: i) modular multispectral imaging array (MMIA); and ii) modular X and gamma-ray sensors (MXGS). MMIA responds to lightning flashes, while high energy detector (HED) and low energy detector (LED) of MXGS are employed to estimate TGF spectra and source. Based on these features, ASIM is providing a large dataset of MMIA, LED and HED triggers that are used identify potential TGF events that require an extra imaging analysis to depict the exact location and validation. Upon such measurements, this study employs coincident ASIM and GLM lightning flashes over Tropical South America (90-30W and 20S-10N) to inspect if the electrically active thunderstorms present unequivocal features associated with each ASIM trigger, i.e., MMIA, LED, HED and TGF. Electrically active thunderstorms were identified as contiguous GLM lightning flashes clustered at 0. 1 x 0.1 degrees on ± 30 minutes of ASIM trigger time following Barnes et al. (2015) and Morales et al. (2021) procedures. During the period of 2018 and 2021, we were able to find 30,417 active thunderstorms that have lightning flashes within ± 3 seconds of trigger time (19,546 during the night and 10,871 during the day). Of those thunderstorms, 343 (1,745) were identified with HED, 278 (1,752) with LED, 12,858 (27811) with MMIA and 49 (116) with TGF within 0-200 ms (200ms-3 sec) of the trigger time. The spatial distribution of those thunderstorms do not show any lightning hot spot. MMIA thunderstorms coincide with the location of HED and LED thunderstorms, except HED thunderstorms over the Peruvian Andes mountain range. Moreover, we did not find any TGF thunderstorms along the mountain regions, especially in Peru and Ecuador. The 60 minutes lightning activity (# flashes/per minute) reveal that TGF thunderstorms show higher lightning flash rates than the MMIA, HED and LED triggered thunderstorms, in addition of a sudden lightning flash rate increase prior to the TGF trigger and sustained high lightning activity for the following 10 minutes. HED and LED show similar lightning temporal evolution (flash rate increase before the trigger and decay afterwards), but LED triggered thunderstorms have higher flash rates over the entire 60 minutes time period. MMIA triggered thunderstorms show the lowest flash rates and almost steady lightning activity during the entire 60 minutes. Based on 90% confidence level of T-Student test, we found that TGF and MMIA thunderstorms are statistical different during the entire 60 minute time period, meaning that not all MMIA thunderstorms produce TGFs. In another hand, we can state that HED and LED triggers are good indicators of TGF emissions, since they are not statistically different, meaning that these parameters could be used as triggers to identify TGF occurrences.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要