Tracking sediment transport through the Miage Glacier, Italy, combining a Lagrangian approach with luminescence burial dating of englacial clasts

Audrey Margirier,Ann Rowan, Julien Brondex,Georgina E. King,Christoph Schmidt,David L. Egholm,Vivi K. Pedersen, C. Scott Watson, Remy Veness,Leif Anderson,Benjamin Lehmann

crossref(2024)

引用 0|浏览4
暂无评分
摘要
  Constraining the pathways and time scales of englacial sediment transport is of primary importance for both understanding the processes that move sediment through glacierised catchments and quantifying the response of mountain glaciers to climate change. However, sediment transport through glaciers is a more complex process than ice flow and difficult to observe; clasts can be transported englacially and at the ice margins, but also deposited into moraines before being re-entrained into englacial transport. We developed a novel method taking a Lagrangian approach that combines luminescence rock surface burial dating of the time for englacial transport of individual rock debris with ice-dynamical glacier evolution modelling of glacial sediment transport to quantify rates of sediment transport through the Miage Glacier catchment in the Italian Alps. Luminescence rock surface burial dating allows determining the burial duration of rocks after they have been exposed to sunlight, but this method has not previously been applied to englacial clasts. We obtained luminescence ages for seven samples embedded in the ice in the ablation zone of Miage Glacier, with burial ages ranging from 0.2 ± 0.1 ka to 5.0 ± 1.4 ka. Samples collected in the upper part of the ablation zone yield younger ages than samples collected near the terminus. The younger luminescence ages (0.2 ± 0.1 ka and 0.3 ± 0.1 ka) are consistent with expected burial duration based on the present-day glacier velocity. In contrast, older luminescence ages obtained for samples located in the lower part of the ablation zone (1.2 ± 0.1 ka to 5.0 ± 1.4 ka) show that these samples record a longer and more complex burial history, suggesting that these samples were either stored in the headwall area or within moraines for several thousand years before being entrained in the ice. In the Miage catchment, debris could have been stored in a moraine at the junction between the Bionnassay Glacier and the Dome Glacier before being entrained in the Miage glacier. We compare the burial ages of the englacial clasts with simulations of glacial sediment transport using a Lagrangian particle tracking scheme in the glacier model iSOSIA. The model results illustrate the range of englacial and subglacial sediment flow paths through the Miage Glacier and simulate similar durations of englacial transport to those obtained for our luminescence samples.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要