High-velocity frictional behavior and microstructure evolution of quartz-bearing dolomite fault gouge

crossref(2024)

引用 0|浏览1
暂无评分
摘要
        Abundant cherts (nodules and bands) were discontinuously hosted by dolostones of the Mesoproterozoic group Strata (∼1.5 Ga) in the Shanxi graben system, North China, where earthquakes are common. Measurements of the shear strength and stability of granular quartz reveal that quartz is a typical tectosilicate which exhibits high frictional strength and velocity-weakening properties. Conversely, dolomite is usually frictionally weak but velocity strengthening. The two minerals also behave differently during coseismic slip. Due to the high temperature generated by frictional heating, the thermal decomposition of dolomite usually results in calcite, periclase nanoparticles and carbon dioxide. However, quartz melts by friction at high temperatures. In order to investigate the role of quartz in dolomite fault rock during the process of coseismic slip, high velocity shear experiments were conducted on the quartz-bearing dolomite fault gouge taken from Yuguang Basin South Margin Fault (YBSMF), northeast of the Shanxi graben system. Also, we carried out high velocity experiments with the synthetic quartz-dolomite gouge with different mass ratio. For a slip velocity ≥ 0.1 m/s and normal stresses from 1.0 to 1.5 MPa, the friction values of the gouge decrease exponentially from a peak value of more than 0.5 to a steady-state value from 0.1 to 0.4. This high-velocity weakening feature was observed in the synthetic quartz-dolomite gouge as well as in the YBSMF gouge. With the increase of quartz content, the slip weakening distance (Dw) increases from 4.27 to 13.24 m, and the steady-state friction coefficient increases from 0.2 to 0.4 at 1.0 MPa normal stress and 1.0 m/s slip velocity. The textures of the gouge are characterized by grain comminution, R shear planes and localized deformation zone in the friction weakening stage. The slip surfaces are characterized by mirror-like smooth surface and nanoparticle aggregates. The theoretical calculation results show that the temperature inside the gauge layer did not exceed 300 °C during the experiments. However, the microstructures present that the dolomite experienced thermal decomposition, indicating that the temperature at the asperity exceeds 550 ℃. We suggest that thermal decomposition together with flash heating may lead to the slip-weakening behavior of quartz-bearing dolomite gauge, and the addition of quartz will increase of the strength of the dolomite gouge.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要