Seagrasses' role as a reverse sedimentary phosphate pump

crossref(2024)

引用 0|浏览3
暂无评分
摘要
Seagrasses are marine-flowing plants that form an important coastal ecosystem. Although occupying less than 0.2% of the ocean’s surface, seagrasses store over 15% of the accumulated global carbon storage in the ocean’s sediments. Thus, Seagrass meadows play a pivotal role in mitigating climate change by carbon sequestration. Seagrasses are widely distributed in oligotrophic tropical waters despite the low nutrient levels in the water column due to their ability to absorb nutrients from the sediment porewater. Moreover, seagrasses can actively mobilize unavailable nutrients e.g., iron and phosphorus in the rhizosphere via multiple biogeochemical interactions. This provides them with an important advantage over pelagic photoautotrophs, which are limited by the availability of nutrients in the water column. Despite their ability to transport nutrients from sinks e.g., sediments to the water column where they can be recycled trough grazing or decomposition, the potential role of seagrass as a revers sedimentary phosphate pump remains unclear. The aim of this study is to examine the effect of seagrass disappearance on phosphate flux in marine coastal environments. In a series of incubation experiments, the change in the phosphate release was examined in different tissues of seagrass Halophila stipulacea. The results showed that the while the highest decomposition rate of the rhizomes was the fastest, the highest phosphate release rate was measured in the leaves, despite having similar phosphate content. Since the leaves mostly decompose in the water column, the released phosphate is made available to planktonic photoautotrophs and further enhances more carbon fixation. Overall, we suggest that in oligotrophic environments seagrasses act as a reverse phosphate pump by accessing phosphate in the sediment and later translocating it to the aboveground parts and releasing in the water column, thus fertilizing planktonic photoautotrophs and enhancing further carbon sequestration.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要