谷歌浏览器插件
订阅小程序
在清言上使用

Development of Continuous Cover Forests under Different Levels of Global Warming – a Methodological Case Study in Southern Germany

crossref(2024)

引用 0|浏览6
暂无评分
摘要
Informing forest decision makers about the impacts of climate change on forests is challenging because the representative concentration pathway scenarios (RCPs) impose deep uncertainty and complexity that is difficult to integrate in management planning. A user-oriented translation of the RCPs would facilitate the integration of climate change impacts in forest decisions and improve the understanding of how different climate policy actions would affect forests. We applied a translation of the RCPs by analyzing how three global warming scenarios related to climate policy actions – the Paris targets (1.5°C and 2°C warming) and a higher warming level without climate policy (3°C) – would impact forest dynamics. We developed indices of forest processes (e.g., species succession, biomass, harvest) that capture changes induced by the global warming scenarios relative to a reference period (1981 – 2010). The methodology was adapted from the JRC PESETA IV project, where climate indices had been developed and impacts on forest vulnerability was explored. We applied this method with a large-scale forest model (LandClim) on a complex and highly diverse 5000 ha forest landscape over an elevation gradient from lowland deciduous to high montane conifer forests in the area of Freiburg, Southern Germany. Simulations started from the state of the forest in the year 2010, and both no-management and a business-as-usual management (BAU) was simulated. For the initial state of the forest, we applied a state-of-the-art initialization procedure that makes use of a detailed inventory network (over 2000 inventory points in the study area) to depict the current forest conditions (e.g., species distribution, stem numbers, tree ages, stem diameters at breast height) at high resolution. BAU was applied in the form of close-to-nature management based on the guidelines by the State Forestry Department. It includes >10 forest types with both younger and older stands. Simulation results indicate reductions of biomass and species richness at lower elevations, including both lowland and submontane zones, connected to an upslope shift of species. As these changes intensify with increasing global warming, the largest impacts are observed under the 3°C warming scenario, leading to the loss of biodiversity associated with dominant species capitalizing on the changing ecological conditions. In summary, by applying this method for a diversity in continuous cover forests over a large elevation gradient, our study outlines important forest dynamics representative for temperate forests in Central Europe under three global warming scenarios. Moreover, the evaluation of close-to-nature management can give important insights for forest decision making.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要