Identification of estrogen response-associated STRA6+granulosa cells within high-grade serous ovarian carcinoma by single-cell sequencing

HELIYON(2024)

引用 0|浏览0
暂无评分
摘要
Background: High-grade serous ovarian carcinoma (HGSOC) is a pathologic subtype of ovarian cancer (OC) with a more lethal prognosis. Extensive heterogeneity results in HGSOC being more susceptible to treatment resistance and adverse treatment effects. Revealing the heterogeneity involved is crucial. Methods: We downloaded the single-cell RNA-seq (scRNA) data from GEO database and performed a scRNA analysis for cell landscape of HGSOC by using the Seurat package. The highly expressed genes were uploaded into the DAVID and KEGG database for enrichment analysis, and the AUCell package was used to calculate cancer-associated hallmark score. The SCENIC analysis was used for key regulons, the estrogen response enrichment scores in TCGA-OV RNA-seq dataset were calculated by using the GSVA package. Besides, the expression of STRA6 and IRF1 and the cell invasion and migration in si-STRA6 OC cells were detected by using the quantitative reverse transcription (qRT)-PCR method and Transwell assay respectively. Results: We successfully constructed a single-cell atlas of HGSOC and delineated the heterogeneity of epithelial cells therein. There were five epithelial cell subpopulations, GLDC + Epithelial cells, PEG3+ leydig cells, STRA6+ granulosa cells, POLE2+ Epithelial cells, and AURKA + Epithelial cells. STRA6+ granulosa cells have the potential to promote tumor growth as well as the highest estrogen response early activity through the biological pathways analysis of highly expressed genes and estrogen response score of ssGSEA. We found that IRF1 and STRA6 expression was remarkably upregulated in the OC cancer cell line HEY. Silencing of STRA6 markedly decreased the invasion and migration ability of the OC cancer cell line HEY. Conclusion: There is extreme heterogeneity of epithelial cells in HGSOC, and STRA6+ granulosa cells may be able to promote cancer progression. Our findings are benefit to the heterogeneity identification of HGSOC and develop targeted therapy strategy for HGSOC patients.
更多
查看译文
关键词
High-grade serous ovarian carcinoma,Single-cell sequencing,STRA6+granulosa cells,SCENIC,TFs,GRNs
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要