The response of Martian magnetotail to interplanetary coronal mass ejection events: joint observations of Tianwen-1 and MAVEN

crossref(2024)

引用 0|浏览5
暂无评分
摘要
The Martian magnetotail serves as an important channel for the escape of planetary ions, with abundant dynamic processes. After Tianwen-1 successfully entered the scientific orbit around Mars, the sun is becoming increasingly active. With the orbital apoapsis ~10,760 km, Tianwen-1 completed its first magnetotail phase from March to July 2022, providing a good opportunity to investigate the response of the Martian far magnetotail to interplanetary coronal mass ejections (ICMEs). We made a preliminary analysis of the dynamic tail under an ICME impact on 16 May 2022, with Tianwen-1 monitoring magnetotail and Mars Atmosphere and Volatile EvolutioN (MAVEN) providing upstream measurements. Based on MAVEN observations, the arrival of the ICME was determined to be around 05:10 UT on 16 May 2022. Subsequently, a significant increase in the energy levels of H+ and O+ ions was seen when Tianwen-1 entered the magnetotail about one and a half hours later. Tianwen-1 continuously detected a subset of O+ ions with energies exceeding 1 keV. Accordingly, the escape rate of O+ became ~6.2 times greater during this ICME, and the highest O+ enhancement happened between 1 keV and 3 keV. The disturbance lasted 39 hours before returning to a quiet level. Furthermore, we conducted a statistical analysis on the escape rate of O+ in the far magnetotail (attitude higher than 2 Mars radius) during 11 ICME events from March to July 2022. The ion loss rates substantially increased during ICME events, especially for O+ with energy above several keV. This observation suggests the presence of effective acceleration processes in the Martian tail under ICME conditions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要