AMOC representation in the North Atlantic in a forced ocean model

crossref(2024)

引用 0|浏览2
暂无评分
摘要
The Atlantic Meridional Overturning Circulation (AMOC) plays a vital role in the climate of Europe and the North Atlantic region by redistributing heat and freshwater in the Atlantic. Climate model studies project an AMOC decline under global warming in the 21st century. However, they disagree on the magnitude and timescales of the weakening. Thus, assessing model performance regarding the representation of the AMOC remains essential. Observational estimates can serve as important benchmarks to understand AMOC variability in ocean models. AMOC observations at different monitoring arrays in the North Atlantic have shown strong variability on multiple time scales and no long-term trend. We analyze the AMOC at the North Atlantic Changes (NOAC) array line at 47°N in the high-resolution forced VIKING20X model simulation from 1980 to 2021. The mean AMOC strength is within the range of the NOAC observations. However, the VIKING20X AMOC exhibits a decreasing trend from the mid-1990s until 2010. This decrease coincides with significant cooling and freshening in the subpolar North Atlantic in VIKING20X. In agreement with NOAC observations, VIKING20X shows meridional connectivity between the NOAC and RAPID AMOC when the NOAC AMOC leads by about one year, though less distinct. This agreement indicates a common mechanism, determining the meridional connectivity in observations and VIKING20X. These mechanisms must be understood and represented in climate models to make informed projections of the future AMOC and its role in the climate system. Furthermore, ocean models and gridded observational data sets could help complement new approaches to monitoring the AMOC at key locations using novel methods and instrumentation, such as drift-free bottom pressure sensors, which could help resolve the geostrophic reference level.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要