谷歌浏览器插件
订阅小程序
在清言上使用

Freezing Shrinkage Dynamics and Surface Dendritic Growth of Floating Refractory Alloy Droplets in Outer Space.

Advanced materials(2024)

引用 0|浏览11
暂无评分
摘要
The freezing shrinkage and dendritic growth are of great importance for various alloys solidified from high-temperature liquids to solids since they dominate microstructure patterns and follow-up processing. However, the microgravity freezing shrinkage dynamics is scarcely explored on the ground as it is hard to suppress the strong natural convection inside liquid alloys. Here, a series of in-orbit solidification experiments is conducted aboard the China Space Station with a long-term stable 10-5 g0 microgravity condition. The highest temperature up to 2265 K together with substantial liquid undercoolings far from a thermodynamically stable state are attained for both Nb82.7Si17.3 and Zr64V36 refractory alloys. Furthermore, the solidification under microgravity of a droplet is simulated to reveal the liquid-solid interface migration, temperature gradient, and flow field. The microgravity solidification process leads to freezing shrinkage cavities and distinctive surface dendritic microstructure patterns. The combined effects of shrinkage dynamics and liquid surface flow in outer space result in the dendrites growing not only along the tangential direction but also along the normal direction to the droplet surface. These space experimental results contribute to a further understanding of the solidification behavior of liquid alloys under a weaker convection condition, which is often masked by gravity on the ground. The freezing shrinkage and dendritic growth are of great importance for various alloys solidified from high-temperature liquids to solids since they dominate microstructure patterns and follow-up processing. It is found that microgravity solidification leads to remarkable freezing shrinkage cavities and distinctive surface dendritic microstructure patterns in outer space. image
更多
查看译文
关键词
dendritic growth,microgravity,phase transition,refractory alloys,undercooling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要