In silico exploration of CB2 receptor agonist in the management of neuroinflammatory conditions by pharmacophore modeling

Shlok Bodke, Nachiket Joshi, Rajasekhar Reddy Alavala,Divya Suares

Computational Biology and Chemistry(2024)

引用 0|浏览0
暂无评分
摘要
Endocannabinoid system plays a pivotal role in controlling neuroinflammation, and modulating this system may not only aid in managing symptoms of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Multiple sclerosis, Epilepsy, Central and Peripheral neuropathic pain, but also, have the potential to target these diseases at an early-stage. In the present study, six different pharmacophore hypotheses were generated from Cannabidiol (CBD)-Cannabinoid Receptor subtype-2 (CB2) and then Zinc database was screened for identification of hit molecules. Identified 215 hit molecules were subjected to preliminary screening with ADMET and drug likeness properties, and about 48 molecules were found with no violations and toxicity properties. In molecular docking studies, six compounds showed better binding energy than CBD and β-caryophyllene (known inhibitor of CB2). These six molecules were designated as leads and subjected to re-docking with glide tool and Lead1 (ZINC000078815430) showed docking score of -9.877kcal/mol, whereas CBD and β-caryophyllene showed score of -9.664 and -8.499kcal/mol, respectively. Lead1 and CBD were evaluated for stability studies with Desmond tool by molecular dynamic simulation studies. Lead1 showed better stability than CBD in all studied parameters such as RMSD, RMSF, SSE, Rg, SASA, etc. In MM-GBSA free energy calculations, ΔGbinding energy of CB2-CBD complex and CB2-Lead1 were found to be -103.13±11.19 and -107.94±5.42kcal/mol, respectively. Six lead molecules stated in the study hold promise with respect to CBD agonistic activity for treating and/or managing chronic conditions and can be explored as an alternative for early-stage cure, which has not yet been experimentally explored.
更多
查看译文
关键词
Phytocannabinoids,Cannabinoid-2 receptor agonists,Pharmacophore,Neuroinflammation,Molecular docking,Molecular dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要