3D parallel pulsed chaos LiDAR system.

Optics express(2024)

引用 0|浏览2
暂无评分
摘要
We propose and experimentally demonstrate a parallel pulsed chaos light detection and ranging (LiDAR) system with a high peak power, parallelism, and anti-interference. The system generates chaotic microcombs based on a chip-scale Si3N4 microresonator. After passing through an acousto-optic modulator, the continuous-wave chaotic microcomb can be transformed into a pulsed chaotic microcomb, in which each comb line provides pulsed chaos. Thus, a parallel pulsed chaos signal is generated. Using the parallel pulsed chaos as the transmission signal of LiDAR, we successfully realize a 4-m three-dimensional imaging experiment using a microelectromechanical mirror for laser scanning. The experimental results indicate that the parallel pulsed chaos LiDAR can detect twice as many pixels as direct detection continuous wave parallel chaos LiDAR under a transmission power of -6 dBm, a duty cycle of 25%, and a pulse repetition frequency of 100 kHz. By further increasing the transmission power to 10 dBm, we acquire an 11 cm × 10 cm image of a target scene with a resolution of 30 × 50 pixels. Finally, the anti-jamming ability of the system is evaluated, and the results show that the system can withstand interferences of at least 15 dB.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要