Stable isotope paleoaltimetry reveals Early to Middle Miocene along-strike elevation differences of the European Alps

crossref(2024)

引用 0|浏览1
暂无评分
摘要
The European Alps, one of the most studied mountain ranges worldwide, are hypothesized to have experienced diachronous surface uplift resulting from slab-breakoff (Schlunegger and Kissling, 2018; Handy et al., 2015). However their surface elevation history is yet not well constrained (Campani et al., 2012; Krsnik et al., 2021; Botsyun et al., 2020). Quantifying surface elevation of an orogen through geological time is essential for our understanding of the geodynamic drivers, as well as the paleoenvironmental impacts of surface uplift.Here, we present Early to Middle Miocene stable isotope-based paleoelevation reconstructions of the Western, Central, and Eastern Alps. Stable isotope paleoaltimetry (the 𝛿-𝛿 approach) is based on the systematic decrease of oxygen (𝛿18O) and hydrogen (𝛿D) isotopic composition of precipitation with increasing elevation and strongly benefits from contrasting high and low elevation records of past rainfall.Accordingly, contrasting temperature-corrected near sea level pedogenic carbonate 𝛿18O values with time-equivalent 𝛿D values of K-Ar dated clay minerals from fault gouges allows for the calculation of the differential elevation between a foreland basin and an orogen’s interior through time. Recent paleoaltimetry research with focus on the Middle Miocene Central Alps indicates elevations exceeding 4 km (Krsnik et al., 2021).With a spatiotemporally enhanced coverage of the European Alps, we present estimates of paleoelevation covering the time interval between ca. 23 and 12 Ma. In addition, paleoclimate simulations for a number of topographic scenarios allow for the isolation of contribution of local elevation complex climate change, and regional topographic configuration signals (Boateng et al., 2023).Our quantitative stable isotope paleoaltimetry estimates indicate peak elevations of >4km in the Central Alps already during the earliest Miocene (ca. 23 Ma). 𝛿D values from fault gouge-derived illites are up to 25 ‰ higher in the Eastern Alps than in the Central Alps for the time interval between 21-16 Ma and suggest that the Eastern Alps were significantly lower during that time interval. Our results from the Mont Blanc massif are in line with isotopic measurements from fluid inclusions in quartz veins, which highlight the Mont Blanc massif in the Western Alps, did not exceed an average elevation of ca. 1 km until the end of the Miocene (Melis, 2023). Collectively, these results confirm a scenario of west-to-east surface uplift as suggested on the basis of slab-breakoff and tearing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要