Towards Fiber-optics-based, Next-generation Observational Platforms for Investigating the Urban Subsurface: the InDySE Project

Verónica Rodríguez Tribaldos,Charlotte Krawczyk, Leila Ehsaninezhad,Patricia Martínez-Garzón,Marco Bohnhoff

crossref(2024)

引用 0|浏览3
暂无评分
摘要
Urban sustainable development and improved resilience to geohazards requires an exhaustive understanding of the geological structure, physical properties and dynamics of the shallow subsurface underneath urbanized areas at the sub-kilometer scale. Yet, our current understanding of the urban subsurface is limited by our ability to image its structure and temporal variations at high resolution using classical geophysical approaches. Recently, the application of conventional ambient noise interferometry analysis to dynamic strain data recorded using Distributed Acoustic Sensing (DAS) deployed on unused telecommunication fiber-optic cables (dark fibers) has emerged as an attractive alternative for cost-efficient, regional scale (10’s of km) seismic imaging and monitoring at high spatial and temporal resolution. Still, its application to urban environments remains vastly underutilized. One of the most significant hurdles is the lack of adequate and efficient data exploration and processing tools to address and harness the unique challenges associated with DAS-based urban seismic noise recordings, which include the complexity of the noise field, unconventional array geometries and non-uniform coupling conditions, and increasingly massive data volumes. The InDySE project (Interrogating the Dynamic Shallow Earth) aims at addressing these challenges to develop and validate the next-generation of subsurface imaging and monitoring platforms in urban areas based on the combination of existing fiber-optic networks and high-frequency infrastructure noise. The project comprises (1) developing high-performance computational tools, advanced processing workflows and machine learning approaches for efficient data exploration, selection and processing using existing datasets, (2) field experiments in target areas to retrieve high-resolution velocity models and monitor changes in seismic velocities, (3) integrating the resultant high-resolution seismic models with complementary datasets such as deformation maps derived from InSAR measurements. One of the selected study areas is the highly populated metropolitan area of Istanbul (Turkey), where understanding the structure, properties and dynamics of the shallow subsurface at high-resolution is critical for evaluating geohazard exposure. Among our objectives will be illuminating potential hidden faults underneath the city, obtaining high-resolution maps of geological materials and subsurface properties that can be translated into maps of local site response to large earthquakes, and tracking seismic velocity changes linked to hydrological dynamics that are known to be responsible for ground movements such as landsliding and subsidence. Ultimately, InDySE aims at developing efficient approaches for using dark fiber and ambient noise in urban subsurface investigations with implications in geohazard assessment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要