Poleward migration of soil moisture–temperature coupling hotspots under global warming

Daniel F.T. Hagan,Diego Miralles,Guojie Wang, Alan T. Kennedy-Asser,Mingxing Li,Waheed Ullah,Shijie Li

crossref(2024)

引用 0|浏览1
暂无评分
摘要
Global hotspot regions where soil moisture (SM) constrains temperature changes are expected to migrate and change in intensity under climate change, impacting hydroclimatic events; however, the nature of these changes is still uncertain. Using multiple model outputs from the Coupled Model Intercomparison Project Phase 6 (CMIP6), we assessed potential future changes in the coupling between boreal summer SM and near-surface mean air temperature (T) across the globe under four Shared Socioeconomic Pathways (SSPs, 2015–2100). We find weakening SM impacts on T (SM-T coupling) in semi-arid, low-latitude regions with increasing emission scenarios due to reduced sensitivity of evaporation to SM. However, our results showed intensifying SM-T coupling primarily over humid regions with increasing precipitation yet decreasing SM due to increasing evaporation. We demonstrate that these changes could be linked to the poleward expansion of the Hadley cells and water-limiting conditions, shifting SM controls on partitioning the surface net radiation and subsequently on T under global warming. These results suggest a higher likelihood of extreme hydroclimatic events, such as heatwaves in higher latitudes associated with the SM–T coupling, which could impact food and water security.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要