Using Pandora direct sun and MAX-DOAS formaldehyde columns for evaluating satellite retrievals

Apoorva Pandey, Bryan Place,Jin Liao,Nader Abuhassan,Alexander Cede,Thomas Hanisco, Elena Lind

crossref(2024)

引用 0|浏览2
暂无评分
摘要
Atmospheric formaldehyde (HCHO) is a short-lived but ubiquitous product of hydrocarbon oxidation. It is a tracer of hydrocarbon emissions and reactivity. HCHO has been observed from satellite-based instruments for over two decades. Retrievals typically involve (1) fitting slant columns to the observed UV/IR radiances and (2) deriving vertical columns from the slant columns using air mass factors. Air mass factors are calculated using radiative modeling and a-priori vertical HCHO distributions from a chemical transport model. The Pandora instruments form a ground-based remote sensing network that is valuable for validating satellite retievals. Pandora provides total and tropospheric columns of HCHO via direct sun (DS) and Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations in the UV, respectively. Here, we discuss conversion of slant columns to vertical columns for DS and MAX-DOAS Pandora measurements, neither of which involves radiative modeling and a-priori assumptions. We intercompare daily and seasonal variations in Pandora HCHO columns from these two distinct measurement techniques for ‘hotspot’ and ‘background’ sites to demonstrate their robustness and complementary strengths, as well as to estimate their uncertainties. We further examine the inter-site and seasonal variability in satellite (e.g., OMI, OMPS) retrievals relative to Pandora HCHO columns.     
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要