Electromagnetic-Thermal Modeling of Multi-Turn Electromagnetic Rail Launcher with Phase Transition

PROGRESS IN ELECTROMAGNETICS RESEARCH M(2024)

引用 0|浏览1
暂无评分
摘要
Electromagnetic thermal performance is critical during electromagnetic launch. However, due to the harsh in -bore environment, it is difficult to obtain multi-parameter information by means of experimental measurement, which further limits our understanding of the field distribution of electromagnetic launcher. In this paper, considering the temperature dependence of material conductivity and armature solid-liquid isothermal phase transition, a bidirectional coupling model of electro-magnetic-thermal field of multi-turn electromagnetic rail launcher is established. The reliability of this model is verified by comparing the calculation results of the same model and input conditions with the numerical tool EMAP3D, as well as the related experimental comparison. In addition, the multi-turn and traditional EMRLs are compared and analyzed. The results show that compared to single-turn EMRL, the armatures have greater driving force in two multi-turn configurations, and the impulse lifting rates are about 1/2. In the multi-turn configurations, the lateral resultant forces of the two armatures are not zero, while the lateral force difference in the integrated negative rail configuration is relatively small. The ablation of the armature in the integrated negative rail configuration is less severe.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要