Small-Signal Stability of Hybrid Inverters with Grid-Following and Grid-Forming Controls

ENERGIES(2024)

引用 0|浏览2
暂无评分
摘要
In the modern power grid, characterized by the increased penetration of power electronics and extensive utilization of renewable energy, inverter-based power plants play a pivotal role as the principal interface of renewable energy sources (RESs) and the grid. Considering the stability characteristics of grid-following (GFL) inverters when the grid is relatively weak, the application of grid-forming (GFM) controls becomes imperative in enhancing the stability of the entire power plant. Thus, there is an urgent need for suitable and effective models to study the interaction and stability of the paralleled inverters employing GFL and GFM controls. Thus, the small-signal modeling with full-order state-space model and eigenvalues analysis are presented in this paper. First, the small-signal state-space model of the individual GFL and GFM inverters is obtained, considering the control loop, interaction, reference frame, transmissions, and time delays. Then, the models of the individual inverter are extended to the hybrid inverters to study the effects of the GFM inverters on the small-signal stability of the entire system. And the impacts of the inertia and damping are analyzed by the eigenvalues of the state-transition matrix. A case comprising three parallel GFL inverters and two GFL inverters with one GFM inverter, respectively, are studied to examine the effectiveness and accuracy of the model. Finally, the stability margin obtained from the eigenvalue analysis of the entire system is verified by time-domain simulations.
更多
查看译文
关键词
paralleled inverters,grid-following,grid-forming,state-space model,small-signal stability,eigenvalues analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要