Solid Electrochemiluminescence Sensor by Immobilization of Emitter Ruthenium(II)tris(bipyridine) in Bipolar Silica Nanochannel Film for Sensitive Detection of Oxalate in Serum and Urine

Ruliang Yu, Yujiao Zhao,Jiyang Liu

NANOMATERIALS(2024)

引用 0|浏览0
暂无评分
摘要
Convenient and highly sensitive detection of oxalate ions in body fluids is of crucial significance for disease prevention, diagnosis, and monitoring of treatment effectiveness. Establishing a simple solid-state electrochemiluminescence (ECL) sensing system for highly sensitive detection of oxalate ions is highly desirable. In this work, a solid ECL sensor was fabricated by immobilizing the commonly used emitter ruthenium(II)tris(bipyridine) (Ru(bpy)32+) on a double-layered bipolar silica nanochannel array film (bp-SNA)-modified electrode, enabling sensitive detection of oxalate ions in serum or urine samples. Cost-effective and readily available indium tin oxide (ITO) was used as the supporting electrode. Convenient fabrication of multiple negatively charged SNA (n-SNA)-modified ITO electrodes was achieved through the one-step Stober solution growth method. Subsequently, a positive outer layer film (p-SNA) was rapidly prepared using an electrochemical-assisted self-assembly method. The double-layered bipolar silica nanochannel array film achieved stable immobilization of Ru(bpy)32+ on the electrode surface, facilitated by the electrostatic adsorption of Ru(bpy)32+ by n-SNA and the electrostatic repulsion by p-SNA. Utilizing oxalate ions as a co-reactant for Ru(bpy)32+, combined with the electrostatic enrichment of oxalate ions by p-SNA, the constructed sensor enabled highly sensitive detection of oxalate ions ranging from 1 nM to 25 mu M and from 25 mu M to 1 mM, with a detection limit (LOD) of 0.8 nM. The fabricated ECL sensor exhibited high selectivity and good stability, making it suitable for ECL detection of oxalate ions in serum and urine samples.
更多
查看译文
关键词
solid electrochemiluminescence sensor,immobilized emitter,bipolar silica nanochannel film,co-reactant,oxalate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要