Data from Monochromosome Transfer and Microarray Analysis Identify a Critical Tumor-Suppressive Region Mapping to Chromosome 13q14 and <i>THSD1</i> in Esophageal Carcinoma

Josephine M.Y. Ko, Pui Ling Chan,Wing Lung Yau, Ho Kin Chan, King Chi Chan, Zhuo You Yu, Fung Mei Kwong,Lance D. Miller,Edison T. Liu,Li Chun Yang, Paulisally H.Y. Lo,Eric J. Stanbridge,Johnny C.O. Tang,Gopesh Srivastava,Sai Wah Tsao, Simon Law, Maria L. Lung

crossref(2023)

引用 0|浏览7
暂无评分
摘要
Abstract

Loss of chromosome 13q regions in esophageal squamous cell carcinoma (ESCC) is a frequent event. Monochromosome transfer approaches provide direct functional evidence for tumor suppression by chromosome 13 in SLMT-1, an ESCC cell line, and identify critical regions at 13q12.3, 13q14.11, and 13q14.3. Differential gene expression profiles of three tumor-suppressing microcell hybrids (MCH) and their tumorigenic parental SLMT-1 cell line were revealed by competitive hybridization using 19k cDNA oligonucleotide microarrays. Nine candidate 13q14 tumor-suppressor genes (TSG), including RB1, showed down-regulation in SLMT-1, compared with NE1, an immortalized normal esophageal epithelial cell line; their average gene expression was restored in MCHs compared with SLMT-1. Reverse transcription-PCR validated gene expression levels in MCHs and a panel of ESCC cell lines. Results suggest that the tumor-suppressing effect is not attributed to RB1, but instead likely involves thrombospondin type I domain-containing 1 (THSD1), a novel candidate TSG mapping to 13q14. Quantitative reverse transcription-PCR detected down-regulation of THSD1 expression in 100% of ESCC and other cancer cell lines. Mechanisms for THSD1 silencing in ESCC involved loss of heterozygosity and promoter hypermethylation, as analyzed by methylation-specific PCR and clonal bisulfite sequencing. Transfection of wild-type THSD1 into SLMT-1 resulted in significant reduction of colony-forming ability, hence providing functional evidence for its growth-suppressive activity. These findings suggest that THSD1 is a good candidate TSG. (Mol Cancer Res 2008;6(4):592–603)

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要