Data from EMT and Stem Cell–Like Properties Associated with miR-205 and miR-200 Epigenetic Silencing Are Early Manifestations during Carcinogen-Induced Transformation of Human Lung Epithelial Cells

crossref(2023)

引用 0|浏览0
暂无评分
摘要
Abstract

Epithelial-to-mesenchymal transition (EMT) is strongly associated with cancer progression, but its potential role during premalignant development has not been studied. Here, we show that a 4-week exposure of immortalized human bronchial epithelial cells (HBEC) to tobacco carcinogens can induce a persistent, irreversible, and multifaceted dedifferentiation program marked by EMT and the emergence of stem cell–like properties. EMT induction was epigenetically driven, initially by chromatin remodeling through H3K27me3 enrichment and later by ensuing DNA methylation to sustain silencing of tumor-suppressive microRNAs (miRNA), miR-200b, miR-200c, and miR-205, which were implicated in the dedifferentiation program in HBECs and also in primary lung tumors. Carcinogen-treated HBECs acquired stem cell–like features characterized by their ability to form spheroids with branching tubules and enrichment of the CD44high/CD24low, CD133, and ALDH1 stem cell–like markers. miRNA overexpression studies indicated that regulation of the EMT, stem-like, and transformed phenotypes in HBECs were distinct events. Our findings extend present concepts of how EMT participates in cancer pathophysiology by showing that EMT induction can participate in cancer initiation to promote the clonal expansion of premalignant lung epithelial cells. Cancer Res; 71(8); 3087–97. ©2011 AACR.

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要