Data from Cell Panel Profiling Reveals Conserved Therapeutic Clusters and Differentiates the Mechanism of Action of Different PI3K/mTOR, Aurora Kinase and EZH2 Inhibitors

crossref(2023)

引用 0|浏览5
暂无评分
摘要
Abstract

Cancer cell line panels are important tools to characterize the in vitro activity of new investigational drugs. Here, we present the inhibition profiles of 122 anticancer agents in proliferation assays with 44 or 66 genetically characterized cancer cell lines from diverse tumor tissues (Oncolines). The library includes 29 cytotoxics, 68 kinase inhibitors, and 11 epigenetic modulators. For 38 compounds this is the first comparative profiling in a cell line panel. By strictly maintaining optimized assay protocols, biological variation was kept to a minimum. Replicate profiles of 16 agents over three years show a high average Pearson correlation of 0.8 using IC50 values and 0.9 using GI50 values. Good correlations were observed with other panels. Curve fitting appears a large source of variation. Hierarchical clustering revealed 44 basic clusters, of which 26 contain compounds with common mechanisms of action, of which 9 were not reported before, including TTK, BET and two clusters of EZH2 inhibitors. To investigate unexpected clusterings, sets of BTK, Aurora and PI3K inhibitors were profiled in biochemical enzyme activity assays and surface plasmon resonance binding assays. The BTK inhibitor ibrutinib clusters with EGFR inhibitors, because it cross-reacts with EGFR. Aurora kinase inhibitors separate into two clusters, related to Aurora A or pan-Aurora selectivity. Similarly, 12 inhibitors in the PI3K/AKT/mTOR pathway separated into different clusters, reflecting biochemical selectivity (pan-PI3K, PI3Kβγδ-isoform selective or mTOR-selective). Of these, only allosteric mTOR inhibitors preferentially targeted PTEN-mutated cell lines. This shows that cell line profiling is an excellent tool for the unbiased classification of antiproliferative compounds. Mol Cancer Ther; 15(12); 3097–109. ©2016 AACR.

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要