Testing MOND on small bodies in the remote solar system

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Modified Newtonian dynamics (MOND), which postulates a breakdown of Newton's laws of gravity/dynamics below some critical acceleration threshold, can explain many otherwise puzzling observational phenomena on galactic scales. MOND competes with the hypothesis of dark matter, which successfully explains the cosmic microwave background and large-scale structure. Here we provide the first solar-system test of MOND that probes the sub-critical acceleration regime. Using the Bekenstein-Milgrom AQUAL formulation, we simulate the evolution of myriads of test particles (planetesimals or comets) born in the trans-Neptunian region and scattered by the giant planets over the lifetime of the Sun to heliocentric distances of 10^2-10^5 au. We include the effects of the Galactic tidal field and passing stars. While Newtonian simulations reproduce the distribution of binding energies of long-period and Oort-cloud comets detectable from Earth, MOND-based simulations do not. This conclusion is robust to plausible changes in the migration history of the planets, the migration history of the Sun, the MOND transition function, effects of the Sun's birth cluster, and the fading properties of long-period comets. For the most popular version of AQUAL, characterized by a gradual transition between the Newtonian and MOND regimes, our MOND-based simulations also fail to reproduce the orbital distribution of trans-Neptunian objects in the detached disk (perihelion > 38 au). Our results do not rule out some MOND theories more elaborate than AQUAL, in which non-Newtonian effects are screened on small spatial scales, at small masses, or in external gravitational fields comparable in strength to the critical acceleration.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要