Results of an Interlaboratory Study on the Working Curve in Vat Photopolymerization

Thomas J. Kolibaba,Jason P. Killgore,Benjamin W. Caplins,Callie I. Higgins, Uwe Arp,C. Cameron Miller,Dianne L. Poster,Yuqin Zong, Scott Broce, Tong Wang, Vaidas Talačka, Jonathan Andersson, Amelia Davenport, Matthew A. Panzer, John R. Tumbleston, Jasmine M. Gonzalez, Jesse Huffstetler, Benjamin R. Lund, Kai Billerbeck, Anthony M. Clay

Additive Manufacturing(2024)

引用 0|浏览1
暂无评分
摘要
The working curve informs resin properties and print parameters for stereolithography, digital light processing, and other photopolymer additive manufacturing (PAM) technologies. First demonstrated in 1992, the working curve measurement of cure depth vs radiant exposure of light is now a foundational measurement in the field of PAM. Despite its widespread use in industry and academia, there is no formal method or procedure for performing the working curve measurement, raising questions about the utility of reported working curve parameters. Here, an interlaboratory study (ILS) is described in which 24 individual laboratories performed a working curve measurement on an aliquot from a single batch of PAM resin. The ILS reveals that there is enormous scatter in the working curve data and the key fit parameters derived from it. The measured depth of light penetration Dp varied by as much as 7x between participants, while the critical radiant exposure for gelation Ec varied by as much as 70x. This significant scatter is attributed to a lack of common procedure, variation in light engines, epistemic uncertainties from the Jacobs equation, and the use of measurement tools with insufficient precision. The ILS findings highlight an urgent need for procedural standardization and better hardware characterization in this rapidly growing field.
更多
查看译文
关键词
digital light processing,stereolithography,vat photopolymerization,working curve,Jacobs equation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要