Quantum interference effects in a 3D topological insulator with high-temperature bulk-insulating behavior

APPLIED PHYSICS REVIEWS(2024)

引用 0|浏览3
暂无评分
摘要
The Bi2Se3-family of 3D topological insulators (3DTI) exhibit insulating bulk states and surface states presenting a Dirac cone. At low temperatures, the conduction channels through the bulk of the material are fully gapped, making 3DTIs perfect systems to study the 2D transport behavior of Dirac fermions. Here, we report a 3DTI Bi1.1Sb0.9STe2 with a reduced level of defects, and thus, high-temperature insulating behavior in its bulk states. The insulator-to-metal transition occurs at similar to 250 K, below which the bulk contributions are negligible. Even at room temperature, the conductivity contribution from the bulk channel is less than 20%. Quantum transport properties of topological surface states are observed in the Bi1.1Sb0.9STe2 nanoflake devices, e.g., high Hall mobility (similar to 1150 cm(2)/V s at 3 K), strong Shubnikov-de Haas oscillations with pi Berry phase, weak antilocalization, and electron-electron interaction. Notably, additional oscillation patterns with quasi-periodicity-in-B and field-independent amplitude features are observed. The surface dominant transport behavior up to room temperature suggests that Bi1.1Sb0.9STe2 is a room temperature topological insulator for electronic/spintronic applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要