谷歌浏览器插件
订阅小程序
在清言上使用

Tailbeat Perturbations Improve Swimming Efficiency by Reducing the Phase Lag Between Body Motion and the Resulting Fluid Response.

PNAS Nexus(2024)

引用 0|浏览16
暂无评分
摘要
Understanding how animals swim efficiently and generate high thrust in complex fluid environments is of considerable interest to researchers in various fields, including biology, physics, and engineering. However, the influence of often-overlooked perturbations on swimming fish remains largely unexplored. Here, we investigate the propulsion generated by oscillating tailbeats with superimposed rhythmic perturbations of high frequency and low amplitude. We reveal, using a combination of experiments in a biomimetic fish-like robotic platform, computational fluid dynamics simulations, and theoretical analysis, that rhythmic perturbations can significantly increase both swimming efficiency and thrust production. The introduction of perturbations increases pressure-induced thrust, while reduced phase lag between body motion and the subsequent fluid dynamics response improves swimming efficiency. Moreover, our findings suggest that beneficial perturbations are sensitive to kinematic parameters, resolving previous conflicts regarding the effects of such perturbations. Our results highlight the potential benefits of introducing perturbations in propulsion generators, providing potential hypotheses for living systems and inspiring the design of artificial flapping-based propulsion systems.
更多
查看译文
关键词
swimming efficiency,perturbations,hydrodynamics,computational fluid dynamics,robotics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要