Polygenic adaptation of a cosmopolitan pest to a novel thermal environment

INSECT MOLECULAR BIOLOGY(2024)

引用 0|浏览7
暂无评分
摘要
The fluctuation in temperature poses a significant challenge for poikilothermic organisms, notably insects, particularly in the context of changing climatic conditions. In insects, temperature adaptation has been driven by polygenes. In addition to genes that directly affect traits (core genes), other genes (peripheral genes) may also play a role in insect temperature adaptation. This study focuses on two peripheral genes, the GRIP and coiled-coil domain containing 2 (GCC2) and karyopherin subunit beta 1 (KPNB1). These genes are differentially expressed at different temperatures in the cosmopolitan pest, Plutella xylostella. GCC2 and KPNB1 in P. xylostella were cloned, and their relative expression patterns were identified. Reduced capacity for thermal adaptation (development, reproduction and response to temperature extremes) in the GCC2-deficient and KPNB1-deficient P. xylostella strains, which were constructed by CRISPR/Cas9 technique. Deletion of the PxGCC2 or PxKPNB1 genes in P. xylostella also had a differential effect on gene expression for many traits including stress resistance, resistance to pesticides, involved in immunity, trehalose metabolism, fatty acid metabolism and so forth. The ability of the moth to adapt to temperature via different pathways is likely to be key to its ability to remain an important pest species under predicted climate change conditions.
更多
查看译文
关键词
CRISPR/Cas9 system,peripheral genes,Plutella xylostella,regulatory network,temperature adaptability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要