Exploring Valence Electron Dynamics of Xenon through Laser-Induced Electron Diffraction

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
Strong-field ionization can induce electron motion in both the continuum and the valence shell of the parent ion. Here, we explore their interplay by studying laser-induced electron diffraction (LIED) patterns arising from interaction with the potentials of two-hole states of the xenon cation. The quantitative rescattering theory is used to calculate the corresponding photoelectron momentum distributions, providing evidence that the spin-orbit dynamics could be detected by LIED. We identify the contribution of these time-evolving hole states to the angular distribution of the rescattered electrons, particularly noting a distinct change along the backward scattering angles. We benchmark numerical results with experiments using ultrabroad and femtosecond laser pulses centered at 3100nm.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要