Learning of Nash Equilibria in Risk-Averse Games

arxiv(2024)

引用 0|浏览4
暂无评分
摘要
This paper considers risk-averse learning in convex games involving multiple agents that aim to minimize their individual risk of incurring significantly high costs. Specifically, the agents adopt the conditional value at risk (CVaR) as a risk measure with possibly different risk levels. To solve this problem, we propose a first-order risk-averse leaning algorithm, in which the CVaR gradient estimate depends on an estimate of the Value at Risk (VaR) value combined with the gradient of the stochastic cost function. Although estimation of the CVaR gradients using finitely many samples is generally biased, we show that the accumulated error of the CVaR gradient estimates is bounded with high probability. Moreover, assuming that the risk-averse game is strongly monotone, we show that the proposed algorithm converges to the risk-averse Nash equilibrium. We present numerical experiments on a Cournot game example to illustrate the performance of the proposed method.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要