Unprotected Organic Cations-The Dilemma of Highly Li-Concentrated Ionic Liquid Electrolytes

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2024)

引用 0|浏览3
暂无评分
摘要
Highly Li-concentrated electrolytes have been widely studied to harness their uniquely varying bulk and interface properties that arise from their distinctive physicochemical properties and coordination structures. Similar strategies have been applied in the realm of ionic liquid electrolytes to exploit their improved functionalities. Despite these prospects, the impact of organic cation behavior on interfacial processes remains largely underexplored compared to the widely studied anion behavior. The present study demonstrates that the weakened interactions between cations and anions engender "unprotected" organic cations in highly Li-concentrated ionic liquid electrolytes, leading to the decomposition of electrolytes during the initial charge. This decomposition behavior is manifested by the substantial irreversible capacities and inferior initial Coulombic efficiencies observed during the initial charging of graphite negative electrodes, resulting in considerable electrolyte consumption and diminished energy densities in full-cell configurations. The innate cation behavior is ascertained by examining the coordination environment of ionic liquid electrolytes with varied Li concentrations, where intricate ionic interactions between organic cations and anions are unveiled. In addition, anionic species with high Lewis basicity were introduced to reinforce the ionic interactions involving organic cations and improve the initial Coulombic efficiency. This study verifies the role of unprotected organic cations while highlighting the significance of the coordination environment in the performance of ionic liquid electrolytes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要